Thomas Laser


Over the past several decades, the financial markets have experienced a technological revolution in how securities and other financial instruments are traded. Where these contracts and assets were once traded on the floors of various registered brick and mortar exchanges across the globe, they are now primarily traded via online platforms. While allowing greater efficiency and transparency in the markets, this shift has also spawned the practice of high-frequency algorithmic trading. This process uses highly sophisticated computers and complex algorithms to trade securities and derivative products faster than the human eye can blink. Although many argue that high-frequency algorithmic trading accounts for a great deal of liquidity in our markets and creates transparency with regard to prices, many feel that the nature of the practice creates the potential for extreme instability in the markets as well. Such instability has been exhibited periodically through occurrences known as “flash crashes.” In response to these events, the Commodity Futures Trading Commission has drafted legislation, known as Regulation Automated Trading, aimed at controlling the extent to which algorithmic trading can disrupt the marketplace. However, several of the provisions have come under a great deal of scrutiny. In particular, one provision provides that those engaging in high-frequency algorithmic trading make their source code (the algorithmic code which drives their business) available to regulatory agencies at any time. This Article analyzes the costs and benefits of high-frequency algorithmic trading, and how Regulation Automated Trading oversteps its bounds in trying to regulate the industry.